- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Varol, Cihan (4)
-
Gupta, Khushi (2)
-
An, Min Kyung (1)
-
Berg, Jeffrey (1)
-
Gundogan, Kubra (1)
-
Islam, Abm Rezbaul (1)
-
Jinad, Razaq (1)
-
Makkena, Navya (1)
-
Oladimeji, Damilola (1)
-
Rasheed, Amar (1)
-
Zhou, Bing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In military operations, real-time monitoring of soldiers’ health is essential for ensuring mission success and safeguarding personnel, yet such systems face challenges related to accuracy, security, and resource efficiency. This research addresses the critical need for secure, real-time monitoring of soldier vitals in the field, where operational security and performance are paramount. The paper focuses on implementing a machine-learning-based system capable of predicting the health states of soldiers using vitals such as heart rate (HR), respiratory rate (RESP), pulse, and oxygen saturation SpO2. A comprehensive pipeline was developed, including data preprocessing, the addition of noise, and model evaluation, to identify the best-performing machine learning algorithm. The system was tested through simulations to ensure real-time inference on real-life data, with reliable and accurate predictions demonstrated in dynamic environments. The gradient boosting model was selected due to its high accuracy, robustness to noise, and ability to handle complex feature interactions efficiently. Additionally, a lightweight cryptographic security system with a 16-byte key was integrated to protect sensitive health and location data during transmission. The results validate the feasibility of deploying such a system in resource-constrained field conditions while maintaining data confidentiality and operational security.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Gundogan, Kubra; Berg, Jeffrey; Varol, Cihan (, IEEE)
-
Makkena, Navya; Islam, Abm Rezbaul; Varol, Cihan; An, Min Kyung (, IEEE)
-
Gupta, Khushi; Varol, Cihan; Zhou, Bing (, Forensic Science International: Digital Investigation)
An official website of the United States government
